Machine Learning Optimization Techniques: A Survey, Classification, Challenges, and Future Research Issues

Optimization approaches in machine learning (ML) are essential for training models to obtain high performance across numerous domains. The article provides a comprehensive overview of ML optimization strategies, emphasizing their classification, obstacles, and potential areas for further study. We proceed with studying the historical progression of optimization methods, emphasizing significant developments and their influence on contemporary algorithms. We analyse the present research to identify widespread optimization algorithms and their uses in supervised learning, unsupervised learning, and reinforcement learning. Various common optimization constraints, including non-convexity, scalability issues, convergence problems, and concerns about robustness and generalization, are also explored. We suggest future research should focus on scalability problems, innovative optimization techniques, domain knowledge integration, and improving interpretability. The present study aims to provide an in-depth review of ML optimization by combining insights from historical advancements, literature evaluations, and current issues to guide future research efforts.
This is a preview of subscription content, log in via an institution to check access.
Access this article
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
Instant access to the full article PDF.
Rent this article via DeepDyve



Similar content being viewed by others

How Can Machine Learning and Optimization Help Each Other Better?
Article 19 December 2019

Learning to optimize: A tutorial for continuous and mixed-integer optimization
Article 08 May 2024

Machine Learning: Towards an Unified Classification Criteria
Chapter © 2021
Explore related subjects
References
- Adams R (2013) Active Queue Management: a Survey. IEEE Commun Surv Tutorials 15(3):1425–1476. https://doi.org/10.1109/SURV.2012.082212.00018ArticleGoogle Scholar
- Alsheikh M, Abu S, Lin D, Niyato, and Hwee Pink Tan (2014) Machine learning in Wireless Sensor networks: algorithms, strategies, and applications. IEEE Commun Surv Tutorials 16(4):1996–2018. https://doi.org/10.1109/COMST.2014.2320099ArticleGoogle Scholar
- Anurag A, Priyadarshi R, Goel A, Gupta B (2020) 2-D Coverage Optimization in WSN Using a Novel Variant of Particle Swarm Optimisation. In 2020 7th International Conference on Signal Processing and Integrated Networks, SPIN 2020, 663–68. https://doi.org/10.1109/SPIN48934.2020.9070978
- Badarla V, Siva Ram Murthy C (2010) A novel learning based solution for Efficient Data Transport in Heterogeneous Wireless Networks. Wireless Netw 16(6):1777–1798. https://doi.org/10.1007/s11276-009-0228-4ArticleGoogle Scholar
- Priyadarshi R, Gupta B, and Amulya Anurag (2020) Wireless Sensor Networks Deployment: a result oriented analysis. Wireless Pers Commun 113(2):843–866. https://doi.org/10.1007/s11277-020-07255-9ArticleGoogle Scholar
- Auld T, Moore AW, Gull SF (2007) Bayesian neural networks for internet traffic classification. IEEE Trans Neural Networks 18(1):223–239. https://doi.org/10.1109/TNN.2006.883010ArticleGoogle Scholar
- Priyadarshi R, Gupta B, and Amulya Anurag (2020) Deployment techniques in Wireless Sensor networks: a Survey, classification, challenges, and Future Research Issues. J Supercomputing 76(9):7333–7373. https://doi.org/10.1007/s11227-020-03166-5ArticleGoogle Scholar
- Priyadarshi R (2021) and Ravi Ranjan Kumar. An Energy-Efficient LEACH Routing Protocol for Wireless Sensor Networks. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and J K Mandal, 673:423–30. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-5546-6_35
- Ayoubi S, Limam N, Salahuddin MA, Shahriar N, Boutaba R, Estrada-Solano F, Caicedo OM (2018) Machine Learning for Cognitive Network Management. IEEE Commun Mag 56(1):158–165. https://doi.org/10.1109/MCOM.2018.1700560ArticleGoogle Scholar
- Priyadarshi R, Nath V (2019) A Novel Diamond–Hexagon Search Algorithm for Motion Estimation. Microsyst Technol 25(12):4587–4591. https://doi.org/10.1007/s00542-019-04376-5ArticleGoogle Scholar
- Rosenblatt F (1960) Perceptron simulation experiments. Proceedings of the IRE 48.3:301–309
- Werbos PJ (1994) The roots of backpropagation: from ordered derivatives to neural networks and political forecasting, vol 1. Wiley
- Nouretdinov I et al (2011) Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. NeuroImage 56(2):809–813 ArticleGoogle Scholar
- Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Rev 38(1):49–95 ArticleMathSciNetGoogle Scholar
- LeCun Y, Bengio Y, Hinton G (2015) Deep Learn Nat 521:436–444 Google Scholar
- Priyadarshi R, Rana H, Srivastava A, Nath V (2023) A Novel Approach for Sink Route in Wireless Sensor Network. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and Jyotsna Kumar Mandal, 887:695–703. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_58
- Bkassiny M, Li Y, Jayaweera SK (2013) A Survey on Machine-Learning techniques in Cognitive Radios. IEEE Commun Surv Tutorials 15(3):1136–1159. https://doi.org/10.1109/SURV.2012.100412.00017ArticleGoogle Scholar
- Qiu Y, Ma L, and Rahul Priyadarshi (2024) Deep Learning challenges and prospects in Wireless Sensor Network Deployment. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-024-10079-6ArticleMathSciNetGoogle Scholar
- Chabaa S, Zeroual A, and Jilali Antari (2010) Identification and prediction of internet traffic using Artificial neural networks. J Intell Learn Syst Appl 02(03):147–155. https://doi.org/10.4236/jilsa.2010.23018ArticleGoogle Scholar
- Chang C, Chung, Chih Jen Lin (2011) LIBSVM: a Library for Support Vector machines. ACM Trans Intell Syst Technol 2(3). https://doi.org/10.1145/1961189.1961199
- Claeys M, Latre S, Famaey J, and Filip De Turck (2014) Design and evaluation of a self-learning http adaptive video streaming client. IEEE Commun Lett 18(4):716–719. https://doi.org/10.1109/LCOMM.2014.020414.132649ArticleGoogle Scholar
- Claeys M, Latré S, Famaey J, Wu T, Van Leekwijck W, and Filip De Turck (2014) Design and optimisation of a (FA)Q-Learning-based HTTP adaptive streaming client. Connection Sci 26(1):25–43. https://doi.org/10.1080/09540091.2014.885273ArticleGoogle Scholar
- Randheer SK, Soni S, Kumar, and Rahul Priyadarshi (2020). Energy-Aware Clustering in Wireless Sensor Networks BT - Nanoelectronics, Circuits and Communication Systems. In, edited by Vijay Nath and J K, Mandal 453–61. Singapore: Springer Singapore
- Dowling J, Curran E, Cunningham R, and Vinny Cahill (2005) Using feedback in collaborative reinforcement learning to adaptively optimize MANET Routing. IEEE Trans Syst Man Cybernetics Part A:Systems Hum 35(3):360–372. https://doi.org/10.1109/TSMCA.2005.846390ArticleGoogle Scholar
- Priyadarshi R, Gupta B (2023) 2-D Coverage optimization in obstacle-based FOI in WSN using modified PSO. J Supercomputing 79(5):4847–4869. https://doi.org/10.1007/s11227-022-04832-6ArticleGoogle Scholar
- Edalat Y, Ahn JS, and Katia Obraczka (2016) Smart experts for Network State Estimation. IEEE Trans Netw Serv Manage 13(3):622–635. https://doi.org/10.1109/TNSM.2016.2586506ArticleGoogle Scholar
- Este A, Gringoli F, and Luca Salgarelli (2009) Support Vector machines for TCP Traffic classification. Comput Netw 53(14):2476–2490. https://doi.org/10.1016/j.comnet.2009.05.003ArticleGoogle Scholar
- Rawat P, Chauhan S, Priyadarshi R (2021) A novel heterogeneous clustering protocol for lifetime maximization of Wireless Sensor Network. Wireless Pers Commun 117(2):825–841. https://doi.org/10.1007/s11277-020-07898-8ArticleGoogle Scholar
- García-Teodoro P, Díaz-Verdejo J, Maciá-Fernández G, and E. Vázquez (2009) Anomaly-based network intrusion detection: techniques, systems and challenges. Computers Secur 28(1–2):18–28. https://doi.org/10.1016/j.cose.2008.08.003ArticleGoogle Scholar
- Priyadarshi R, and Bharat Gupta (2021) Area Coverage optimization in three-Dimensional Wireless Sensor Network. Wireless Pers Commun 117(2):843–865. https://doi.org/10.1007/s11277-020-07899-7ArticleGoogle Scholar
- Yin, F., Lin, Z., Kong, Q., Xu, Y., Li, D., Theodoridis, S.,… Cui, S. R. (2020). FedLoc:Federated Learning Framework for Data-Driven Cooperative Localization and Location Data Processing. IEEE Open Journal of Signal Processing, 1:187–215. https://doi.org/10.1109/OJSP.2020.3036276
- Yin F, Fritsche C, Jin D, Gustafsson F, Zoubir AM (2015) Cooperative localization in WSNs using Gaussian Mixture modeling: distributed ECM algorithms. IEEE Trans Signal Process 63(6):1448–1463. https://doi.org/10.1109/TSP.2015.2394300ArticleGoogle Scholar
- Xu G, Zhang Q, Song Z, Ai B (2023) Relay-assisted Deep Space Optical Communication System over coronal fading channels. IEEE Trans Aerosp Electron Syst 59(6):8297–8312. https://doi.org/10.1109/TAES.2023.3301463ArticleGoogle Scholar
- Yan, A., Li, Z., Gao, Z., Zhang, J., Huang, Z., Ni, T.,… Wen, X. (2024). MURLAV: A Multiple-Node-Upset Recovery Latch and Algorithm-Based Verification Method. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. https://doi.org/10.1109/TCAD.2024.3357593
- Yan, A., Cao, A., Huang, Z., Cui, J., Ni, T., Girard, P.,… Zhang, J. (2023). Two Double-Node-Upset-Hardened Flip-Flop Designs for High-Performance Applications. IEEE Transactions on Emerging Topics in Computing, 11(4):1070–1081. https://doi.org/10.1109/TETC.2023.3317070
- Dai M, Luo L, Ren J, Yu H, Sun G (2022) PSACCF: prioritized online slice Admission Control considering Fairness in 5G/B5G networks. IEEE Trans Netw Sci Eng 9(6):4101–4114. https://doi.org/10.1109/TNSE.2022.3195862ArticleGoogle Scholar
- Sun G, Xu Z, Yu H, Chang V (2021) Dynamic network function provisioning to Enable Network in Box for Industrial Applications. IEEE Trans Industr Inf 17(10):7155–7164. https://doi.org/10.1109/TII.2020.3042872ArticleGoogle Scholar
- Sun, G., Zhu, G., Liao, D., Yu, H., Du, X.,… Guizani, M. (2019). Cost-Efficient Service Function Chain Orchestration for Low-Latency Applications in NFV Networks. IEEE Systems Journal, 13(4):3877–3888. https://doi.org/10.1109/JSYST.2018.2879883
- Ma X, Dong Z, Quan W, Dong Y, Tan Y (2023) Real-time assessment of asphalt pavement moduli and traffic loads using monitoring data from Built-in Sensors: Optimal sensor placement and identification algorithm.Mech Syst Signal Process 187:109930. https://doi.org/10.1016/j.ymssp.2022.109930
- Qu J, Mao B, Li Z, Xu Y, Zhou K, Cao X, Wang X (2023) Recent progress in Advanced Tactile Sensing technologies for Soft Grippers. Adv Funct Mater 33(41):2306249. https://doi.org/10.1002/adfm.202306249ArticleGoogle Scholar
- Priyadarshi R, Bhardwaj P, Gupta P, and Vijay Nath (2023) Utilization of smartphone-based Wireless sensors in Agricultural Science: a state of art. Lecture Notes Electr Eng 887:681–688. https://doi.org/10.1007/978-981-19-1906-0_56ArticleGoogle Scholar
- Li R, Peng B (2022) Implementing Monocular Visual-Tactile sensors for Robust Manipulation. Cyborg Bionic Syst 2022. https://doi.org/10.34133/2022/9797562
- Aibin Y, Feng X, Zhao X, Zhou H, Cui J, Ying Z, Girard P, Wen X HITTSFL: Design of a Cost-Effective HIS-Insensitive TNU-Tolerant and SET-Filtering Latch for Safety-Critical Applications, IEEE/ACM Design Automation Conference (DAC2020), Oral, pp. 1–6, 2020/7/19–23, San Francisco, USA
- J., X., S., H. P., X., Z., & J., H. (2022) The improvement of Road Driving Safety guided by visual Inattentional blindness. IEEE Trans Intell Transp Syst, 23(6):4972–4981. https://doi.org/10.1109/TITS.2020.3044927
- Priyadarshi R, and Bharat Gupta (2020) Coverage Area Enhancement in Wireless Sensor Network. Microsyst Technol 26(5):1417–1426. https://doi.org/10.1007/s00542-019-04674-yArticleGoogle Scholar
- Dai X, Xiao Z, Jiang H, Alazab M, Lui JCS, Dustdar S, Liu J (2023) Task Co-offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of things. IEEE Trans Industr Inf 19(1):480–490. https://doi.org/10.1109/TII.2022.3158974ArticleGoogle Scholar
- Jiang H, Dai X, Xiao Z, Iyengar AK (2022) Joint Task Offloading and Resource Allocation for Energy-Constrained Mobile Edge Computing. IEEE Trans Mob Comput. https://doi.org/10.1109/TMC.2022.3150432ArticleGoogle Scholar
- Dai X, Xiao Z, Jiang H, Lui JCS (2023) UAV-Assisted Task Offloading in Vehicular Edge Computing Networks. IEEE Trans Mob Comput. https://doi.org/10.1109/TMC.2023.3259394ArticleGoogle Scholar
- Sun L, Liang J, Zhang C, Wu D, Zhang Y (2023) Meta-transfer Metric Learning for Time Series classification in 6G-Supported Intelligent Transportation systems. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2023.3250962ArticleGoogle Scholar
- Mao Y, Sun R, Wang J, Cheng Q, Kiong L, Ochieng C, Y. W (2022) New time-differenced carrier phase approach to GNSS/INS integration. GPS Solutions 26(4):122. https://doi.org/10.1007/s10291-022-01314-3ArticleGoogle Scholar
- Mao Y, Zhu Y, Tang Z, Chen Z (2022) A Novel Airspace Planning Algorithm for Cooperative Target localization. Electronics 11(18):2950. https://doi.org/10.3390/electronics11182950ArticleGoogle Scholar
- Xie Y, Wang X, Shen Z, Sheng Y, Wu G (2023) A two-stage estimation of distribution Algorithm with Heuristics for Energy-Aware Cloud Workflow Scheduling. IEEE Trans Serv Comput 16(6):4183–4197. https://doi.org/10.1109/TSC.2023.3311785ArticleGoogle Scholar
- Shang M, Luo J (2021) The Tapio Decoupling Principle and Key strategies for changing factors of Chinese urban Carbon Footprint based on Cloud Computing. Int J Environ Res Public Health 18(4):2101. https://doi.org/10.3390/ijerph18042101ArticleGoogle Scholar
- Luo J, Zhao C, Chen Q, Li G (2022) Using deep belief network to construct the agricultural information system based on internet of things. J Supercomputing 78(1):379–405. https://doi.org/10.1007/s11227-021-03898-yArticleGoogle Scholar
- Cao B, Zhao J, Yang P, Gu Y, Muhammad K, Rodrigues J, C P J, V de Albuquerque, C H (2020) Multiobjective 3-D Topology Optimization of Next-Generation Wireless Data Center Network. IEEE Trans Industr Inf 16(5):3597–3605. https://doi.org/10.1109/TII.2019.2952565ArticleGoogle Scholar
- Yu J, Lu L, Chen Y, Zhu Y, Kong L (2021) An indirect eavesdropping attack of keystrokes on Touch screen through Acoustic Sensing. IEEE Trans Mob Comput 20(2):337–351. https://doi.org/10.1109/TMC.2019.2947468ArticleGoogle Scholar
- Li K, Ji L, Yang S, Li H, Liao X (2022) Couple-Group Consensus of Cooperative–competitive heterogeneous Multiagent systems: a fully distributed event-triggered and Pinning Control Method. IEEE Trans Cybernetics 52(6):4907–4915. https://doi.org/10.1109/TCYB.2020.3024551ArticleGoogle Scholar
- Min H, Lei X, Wu X, Fang Y, Chen S, Wang W, Zhao X (2024) Toward interpretable anomaly detection for autonomous vehicles with denoising variational transformer. Eng Appl Artif Intell 129:107601. https://doi.org/10.1016/j.engappai.2023.107601ArticleGoogle Scholar
- Hou X, Zhang L, Su Y, Gao G, Liu Y, Na Z, Chen T (2023) A space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identification. Nano Energy 105:108013. https://doi.org/10.1016/j.nanoen.2022.108013ArticleGoogle Scholar
- Hou X, Xin L, Fu Y, Na Z, Gao G, Liu Y, Chen T (2023) A self-powered biomimetic mouse whisker sensor (BMWS) aiming at terrestrial and space objects perception. Nano Energy 118:109034. https://doi.org/10.1016/j.nanoen.2023.109034ArticleGoogle Scholar
- Liang X, Chen Z, Deng Y, Liu D, Liu X, Huang Q, Arai T (2023) Field-controlled microrobots fabricated by Photopolymerization. Cyborg Bionic Syst 4:9. https://doi.org/10.34133/cbsystems.0009ArticleGoogle Scholar
- Ma S, Chen Y, Yang S, Liu S, Tang L, Li B, Li Y (2023) The Autonomous Pipeline Navigation of a Cockroach Bio-robot with enhanced walking stimuli. Cyborg Bionic Syst 4:67. https://doi.org/10.34133/cbsystems.0067ArticleGoogle Scholar
- Cai Z, Zhu X, Gergondet P, Chen X, Yu Z (2023) A friction-driven strategy for Agile Steering Wheel Manipulation by Humanoid Robots. Cyborg Bionic Syst 4:64. https://doi.org/10.34133/cbsystems.0064ArticleGoogle Scholar
- Li X, Sun Y (2021) Application of RBF neural network optimal segmentation algorithm in credit rating. Neural Comput Appl 33(14):8227–8235. https://doi.org/10.1007/s00521-020-04958-9ArticleGoogle Scholar
- Long X, Mao M, Su T, Su Y, Tian M (2023) Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates. Def Technol 23:100–111. https://doi.org/10.1016/j.dt.2022.02.003ArticleGoogle Scholar
- Long X, Lu C, Su Y, Dai Y (2023) Machine learning framework for predicting the low cycle fatigue life of lead-free solders. Eng Fail Anal 148:107228. https://doi.org/10.1016/j.engfailanal.2023.107228ArticleGoogle Scholar
- Hu J, Wu Y, Li T, Ghosh BK (2019) Consensus Control of General Linear Multiagent Systems with Antagonistic Interactions and communication noises. IEEE Trans Autom Control 64(5):2122–2127. https://doi.org/10.1109/TAC.2018.2872197ArticleMathSciNetGoogle Scholar
- Chen B, Hu J, Zhao Y, Ghosh BK (2022) Finite-Time velocity-free Rendezvous Control of multiple AUV Systems with Intermittent Communication. IEEE Trans Syst Man Cybernetics: Syst 52(10):6618–6629. https://doi.org/10.1109/TSMC.2022.3148295ArticleGoogle Scholar
- Bo C, Jiangping H, Bijoy G (2023) Finite-Time Observer Based Tracking Control of Heterogeneous Multi-AUV Systems with Partial Measurements and Intermittent Communication. Science China Information Sciences. https://doi.org/10.1007/s11432-023-3903-6
- Jiang Y, Li X (2022) Broadband cancellation method in an adaptive co-site interference cancellation system. Int J Electron 109(5):854–874. https://doi.org/10.1080/00207217.2021.1941295ArticleGoogle Scholar
- Zhang, X., Deng, H., Xiong, Z., Liu, Y., Rao, Y., Lyu, Y.,… Li, Y. (2024). Secure Routing Strategy Based on Attribute-Based Trust Access Control in Social-Aware Networks.Journal of Signal Processing Systems. https://doi.org/10.1007/s11265-023-01908-1
- Lyu T, Xu H, Zhang L, Han Z (2024) Source selection and resource allocation in Wireless-Powered Relay networks: an adaptive dynamic programming-based Approach. IEEE Internet Things J 11(5):8973–8988. https://doi.org/10.1109/JIOT.2023.3321673ArticleGoogle Scholar
- Liu G (April 2021) Data Collection in MI-Assisted Wireless Powered Underground Sensor networks: directions, recent advances, and challenges. IEEE Commun Mag 59(4):132–138. https://doi.org/10.1109/MCOM.001.2000921
- Zhao L, Qu S, Xu H, Wei Z, Zhang C (2024) Energy-efficient trajectory design for secure SWIPT systems assisted by UAV-IRS. Veh Commun 45:100725. https://doi.org/10.1016/j.vehcom.2023.100725ArticleGoogle Scholar
- Hou M, Zhao Y, Ge X (2017) Optimal scheduling of the plug-in electric vehicles aggregator energy and regulation services based on grid to vehicle. Int Trans Electr Energy Syst 27(6):e2364. https://doi.org/10.1002/etep.2364ArticleGoogle Scholar
- Lei Y, Yanrong C, Hai T, Ren G, Wenhuan W (2023) DGNet: an adaptive lightweight defect detection model for New Energy Vehicle Battery Current Collector. IEEE Sens J 23(23):29815–29830. https://doi.org/10.1109/JSEN.2023.3324441ArticleGoogle Scholar
- Xu Y, Wang E, Yang Y, Chang Y (2022) A unified collaborative representation learning for neural-network based Recommender systems. IEEE Trans Knowl Data Eng 34(11):5126–5139. https://doi.org/10.1109/TKDE.2021.3054782ArticleGoogle Scholar
- Liu X, Lou S, Dai W (2023) Further results on System identification of nonlinear state-space models. Automatica 148:110760. https://doi.org/10.1016/j.automatica.2022.110760ArticleMathSciNetGoogle Scholar
- Wang Q, Dai W, Zhang C, Zhu J, Ma X (2023) A Compact Constraint Incremental Method for Random Weight Networks and its application. IEEE transactions on neural networks and Learning systems. https://doi.org/10.1109/TNNLS.2023.3289798
- Zhang, H., Mi, Y., Liu, X., Zhang, Y., Wang, J.,… Tan, J. (2023). A differential game approach for real-time security defense decision in scale-free networks. Computer Networks, 224, 109635. https://doi.org/10.1016/j.comnet.2023.109635
- Cao K, Ding H, Li W, Lv L, Gao M, Gong F, Wang B (2022) On the Ergodic Secrecy Capacity of Intelligent reflecting surface aided Wireless Powered Communication systems. IEEE Wirel Commun Lett PP(1). https://doi.org/10.1109/LWC.2022.3199593
- Cheng, B., Wang, M., Zhao, S., Zhai, Z., Zhu, D.,… Chen, J. (2017). Situation-Aware Dynamic Service Coordination in an IoT Environment. IEEE/ACM Transactions on Networking,25(4), 2082–2095. https://doi.org/10.1109/TNET.2017.2705239
- Zheng, W., Lu, S., Cai, Z., Wang, R., Wang, L.,… Yin, L. (2023). PAL-BERT: An Improved Question Answering Model. Computer Modeling in Engineering & Sciences. https://doi.org/10.32604/cmes.2023.046692
- Cao B, Li Z, Liu X, Lv Z, He H (2023) Mobility-aware Multiobjective Task Offloading for Vehicular Edge Computing in Digital Twin Environment. IEEE J Sel Areas Commun 41(10):3046–3055. https://doi.org/10.1109/JSAC.2023.3310100ArticleGoogle Scholar
- Geurts P, Ernst D, and Louis Wehenkel (2006) Extremely randomized trees. Mach Learn 63(1):3–42. https://doi.org/10.1007/s10994-006-6226-1ArticleGoogle Scholar
- Giacinto G, Perdisci R, Rio MD, and Fabio Roli (2008) Intrusion detection in computer networks by a modular ensemble of one-class classifiers. Inform Fusion 9(1):69–82. https://doi.org/10.1016/j.inffus.2006.10.002ArticleGoogle Scholar
- Goldberger AS (2004) Econometric Computing by Hand. J Econ Soc Meas 29(1–3):115–117. https://doi.org/10.3233/jem-2004-0213ArticleGoogle Scholar
- Ha S, Rhee I, Xu L (2008) CUBIC: a new TCP-Friendly high-speed TCP variant. Operating Syst Rev (ACM) 42(5):64–74. https://doi.org/10.1145/1400097.1400105ArticleGoogle Scholar
- Hajji H (2005) Statistical Analysis of Network Traffic for Adaptive Faults Detection. IEEE Trans Neural Networks 16(5):1053–1063. https://doi.org/10.1109/TNN.2005.853414ArticleGoogle Scholar
- Hariri B, Sadati N (2007) NN-RED: an AQM mechanism based on neural networks. Electron Lett 43(19):1053–1055. https://doi.org/10.1049/el:20071791ArticleGoogle Scholar
- Hu T, and Yunsi Fei (2010) QELAR: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater Sensor Networks. IEEE Trans Mob Comput 9(6):796–809. https://doi.org/10.1109/TMC.2010.28ArticleGoogle Scholar
- Hu W, Wei Hu, and Steve Maybank (2008) AdaBoost-Based algorithm for Network Intrusion Detection. IEEE Trans Syst Man Cybernetics Part B: Cybernetics 38(2):577–583. https://doi.org/10.1109/TSMCB.2007.914695ArticleGoogle Scholar
- Jain V, Randheer R, Priyadarshi, and Ankush Thakur (2019) Performance analysis of Block Matching algorithms. Lecture Notes Electr Eng 556:73–82 Springer Singapore. https://doi.org/10.1007/978-981-13-7091-5_7ArticleGoogle Scholar
- Jayaraj A, Venkatesh T, Siva Ram C Murthy (2008) Loss classification in Optical Burst switching networks using machine learning techniques: improving the performance of TCP. IEEE J Sel Areas Commun 26(6):45–54. https://doi.org/10.1109/JSACOCN.2008.033508ArticleGoogle Scholar
- Khanafer RM, Solana B, Triola J, Barco R, Moltsen L, Altman Z, Lázaro P (2008) Automated diagnosis for UMTS Networks using bayesian Network Approach. IEEE Trans Veh Technol 57(4):2451–2461. https://doi.org/10.1109/TVT.2007.912610ArticleGoogle Scholar
- Kiciman E, and Armando Fox (2005) Detecting application-level failures in component-based internet services. IEEE Trans Neural Networks 16(5):1027–1041. https://doi.org/10.1109/TNN.2005.853411ArticleGoogle Scholar
- Klaine P, Valente MA, Imran O, Onireti, and Richard Demo Souza (2017) A Survey of Machine Learning techniques Applied to Self-Organizing Cellular Networks. IEEE Commun Surv Tutorials 19(4):2392–2431. https://doi.org/10.1109/COMST.2017.2727878ArticleGoogle Scholar
- Kumar S, Soni SK, Randheer, and Rahul Priyadarshi (2020) Performance Analysis of Novel Energy Aware Routing in Wireless Sensor Network. Lecture Notes Electr Eng 642:503–511 Springer Singapore. https://doi.org/10.1007/978-981-15-2854-5_44ArticleGoogle Scholar
- Kumar S, Soni SK, Randheer (2020) and Rahul Priyadarshi. Performance Analysis of Novel Energy Aware Routing in Wireless Sensor Network. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and J K Mandal, 642:503–11. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-2854-5_44
- Lemaître G, Nogueira F, Aridas CK (2017) Imbalanced-Learn: a Python Toolbox to tackle the curse of Imbalanced datasets in Machine Learning. J Mach Learn Res 18:1–5 Google Scholar
- Mirza M, Sommers J, Barford P, Zhu X (2010) A Machine Learning Approach to TCP Throughput Prediction. IEEE/ACM Trans Networking 18(4):1026–1039. https://doi.org/10.1109/TNET.2009.2037812ArticleGoogle Scholar
- Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533. https://doi.org/10.1038/nature14236ArticleGoogle Scholar
- Priyadarshi R, Yadav S, and Deepika Bilyan (2019) Performance and comparison analysis of MIEEP Routing Protocol over adapted LEACH Protocol. Smart Comput Strategies: Theoretical Practical Aspects 237–245. https://doi.org/10.1007/978-981-13-6295-8_20
- Moustapha AI, and Rastko R. Selmic (2008) Wireless Sensor Network modeling using modified recurrent neural networks: application to Fault Detection. IEEE Trans Instrum Meas 57(5):981–988. https://doi.org/10.1109/TIM.2007.913803ArticleGoogle Scholar
- Muniyandi A, Prabakar R, Rajeswari, Rajaram R (2012) Network Anomaly detection by cascading K-Means clustering and C4.5 decision Tree Algorithm. Procedia Eng 30:174–182. https://doi.org/10.1016/j.proeng.2012.01.849ArticleGoogle Scholar
- Nguyen TTT, Armitage G, Philip Branch, and Sebastian Zander (2012) Timely and continuous machine-learning-based classification for interactive IP traffic. IEEE/ACM Trans Networking 20(6):1880–1894. https://doi.org/10.1109/tnet.2012.2187305ArticleGoogle Scholar
- Nguyen TTT, and Grenville Armitage (2008) A survey of techniques for internet traffic classification using machine learning. IEEE Commun Surv Tutorials 10(4):56–76. https://doi.org/10.1109/SURV.2008.080406ArticleGoogle Scholar
- Nichols K, and Van Jacobson (2012) Controlling Queue Delay. Queue 10(5):20–34. https://doi.org/10.1145/2208917.2209336ArticleGoogle Scholar
- Nunes BA, Arouche K, Veenstra W, Ballenthin S, Lukin, Obraczka K (2014) A Machine Learning Framework for TCP Round-Trip Time Estimation. Eurasip Journal on Wireless Communications and Networking 2014. https://doi.org/10.1186/1687-1499-2014-47
- Panda M, Abraham A, and Manas Ranjan Patra (2012) A hybrid Intelligent Approach for Network Intrusion Detection. Procedia Eng 30:1–9. https://doi.org/10.1016/j.proeng.2012.01.827ArticleGoogle Scholar
- Pandey A, Kumar D, Priyadarshi R (2023) and Vijay Nath. Development of Smart Village for Better Lifestyle of Farmers by Crop and Health Monitoring System. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and Jyotsna Kumar Mandal, 887:689–94. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_57
- Pandey A, Kumar D, Priyadarshi R, and Vijay Nath (2023) Development of Smart Village for Better Lifestyle of Farmers by Crop and Health Monitoring System. Lecture Notes Electr Eng 887:689–694. https://doi.org/10.1007/978-981-19-1906-0_57. Springer Nature Singapore Singapore ArticleGoogle Scholar
- Peddabachigari S, Abraham A, Grosan C, and Johnson Thomas (2007) Modeling intrusion detection system using hybrid Intelligent systems. J Netw Comput Appl 30(1):114–132. https://doi.org/10.1016/j.jnca.2005.06.003ArticleGoogle Scholar
- Pinson MH, Wolf S (2004) A new standardized method for objectively measuring Video Quality. IEEE Trans Broadcast 50(3):312–322. https://doi.org/10.1109/TBC.2004.834028ArticleGoogle Scholar
- Priyadarshi R, Rawat P, and Vijay Nath (2019) Energy dependent cluster formation in heterogeneous Wireless Sensor Network. Microsyst Technol 25(6):2313–2321. https://doi.org/10.1007/s00542-018-4116-7ArticleGoogle Scholar
- Jiang H, Luo Y, Zhang QY, Yin MY, and Chun Wu (2017) TCP-Gvegas with prediction and adaptation in Multi-hop Ad Hoc Networks. Wireless Netw 23(5):1535–1548. https://doi.org/10.1007/s11276-016-1242-yArticleGoogle Scholar
- Priyadarshi R, Rawat P, Nath V, Acharya B, Shylashree N (2020) Three Level Heterogeneous Clustering Protocol for Wireless Sensor Network. Microsyst Technol 26(12):3855–3864. https://doi.org/10.1007/s00542-020-04874-xArticleGoogle Scholar
- Jiang S, Song X, Wang H, Han JJ, Li QH (2006) A clustering-based method for unsupervised intrusion detections. Pattern Recognit Lett 27(7):802–810. https://doi.org/10.1016/j.patrec.2005.11.007ArticleGoogle Scholar
- Priyadarshi R, Singh L, Kumar S, Sharma I (2018) A Hexagonal Network Division Approach for Reducing Energy Hole Issue in WSN. Eur J Pure Appl Math 118 (March)
- Jin Y, Duffield N, Erman J, Haffner P, Sen S, and Zhi Li Zhang (2012) A modular machine Learning System for Flow-Level Traffic classification in large networks. ACM Trans Knowl Discovery Data 6(1). https://doi.org/10.1145/2133360.2133364
- Karagiannis T, Papagiannaki K, Faloutsos M (2005) BLINC: Multilevel Traffic classification in the Dark. Comput Communication Rev 35(4):229–240. https://doi.org/10.1145/1090191.1080119ArticleGoogle Scholar
- Karami A (2015) ACCPndn: adaptive congestion control protocol in named data networking by learning capacities using optimized time-lagged feedforward neural network. J Netw Comput Appl 56:1–18. https://doi.org/10.1016/j.jnca.2015.05.017ArticleGoogle Scholar
- Priyadarshi R, Soni SK, and Prashant Sharma (2019) An enhanced GEAR Protocol for Wireless Sensor Networks. Lecture Notes Electr Eng 511:289–297 Springer Singapore. https://doi.org/10.1007/978-981-13-0776-8_27ArticleGoogle Scholar
- Rao S (2006) Operational Fault detection in Cellular Wireless Base-stations. IEEE Trans Netw Serv Manage 3(2):1–11. https://doi.org/10.1109/TNSM.2006.4798311ArticleGoogle Scholar
- Rawat P, Chauhan S, and Rahul Priyadarshi (2020) Energy-efficient clusterhead selection Scheme in Heterogeneous Wireless Sensor Network. J Circuits Syst Computers 29(13):2050204. https://doi.org/10.1142/S0218126620502047ArticleGoogle Scholar
- Reddy EK (2017) Comparative Analysis of Clustering Techniques in Data Mining. Int J Adv Sci Technol Eng Manage Sci 9028(1):2454–2356. www.ijastems.orgGoogle Scholar
- Ross DA, Lim J, Lin RS, Ming HY (2008) Incremental learning for Robust Visual Tracking. Int J Comput Vision 77(1–3):125–141. https://doi.org/10.1007/s11263-007-0075-7ArticleGoogle Scholar
- Sateesh V, Anugrahith A, Kumar R, Priyadarshi, Nath V (2021) A Novel Deployment Scheme to Enhance the Coverage in Wireless Sensor Network. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and J K Mandal, 673:985–93. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-5546-6_82
- Shon T, and Jongsub Moon (2007) A Hybrid Machine Learning Approach to Network Anomaly Detection. Inf Sci 177(18):3799–3821. https://doi.org/10.1016/j.ins.2007.03.025ArticleGoogle Scholar
- Singh L, Kumar A (2020) and Rahul Priyadarshi. Performance and Comparison Analysis of Image Processing Based Forest Fire Detection. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and J K Mandal, 642:473–79. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-2854-5_41
- Sun J, Chan S, Zukerman M (2012) IAPI: An Intelligent adaptive PI active Queue Management Scheme. Comput Commun 35(18):2281–2293. https://doi.org/10.1016/j.comcom.2012.07.013ArticleGoogle Scholar
- Priyadarshi R, and Raj Vikram (2023) A triangle-based localization Scheme in Wireless Multimedia Sensor Network. Wireless Pers Commun 133(1):525–546. https://doi.org/10.1007/s11277-023-10777-7ArticleGoogle Scholar
- Tesauro G (2007) Reinforcement learning in Autonomic Computing: a Manifesto and Case studies. IEEE Internet Comput 11(1):22–30. https://doi.org/10.1109/MIC.2007.21ArticleGoogle Scholar
- Tsai C, Fong YF, Hsu CY, Lin, Wei YL (2009) Intrusion detection by machine learning: a review. Expert Syst Appl 36(10):11994–11990. https://doi.org/10.1016/j.eswa.2009.05.029ArticleGoogle Scholar
- Priyadarshi R, Yadav S (2019) and Deepika Bilyan. Performance Analysis of Adapted Selection Based Protocol over LEACH Protocol. In Smart Computational Strategies: Theoretical and Practical Aspects, edited by Ashish Kumar Luhach, Kamarul Bin Ghazali Hawari, Ioan Cosmin Mihai, Pao-Ann Hsiung, and Ravi Bhushan Mishra, 247–56. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-6295-8_21
- Wang M, Cui Y, Wang X, Shihan Xiao, and Junchen Jiang (2018) Machine learning for networking: Workflow, advances and opportunities. IEEE Network 32(2):92–99. https://doi.org/10.1109/MNET.2017.1700200ArticleMathSciNetGoogle Scholar
- Priyadarshi R (2024) Energy-efficient routing in Wireless Sensor networks: a Meta-heuristic and Artificial Intelligence-Based Approach: a Comprehensive Review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-10039-6ArticleGoogle Scholar
- Stigler SM (2007) Gauss and the invention of least squares. Annals Stat 9(3). https://doi.org/10.1214/aos/1176345451
- Priyadarshi R (2024) Exploring machine learning solutions for overcoming challenges in IoT-Based Wireless Sensor Network Routing: a Comprehensive Review. Wireless Netw. https://doi.org/10.1007/s11276-024-03697-2ArticleGoogle Scholar
- Thakkar Mansi K, Patel MM (2018) Energy Efficient Routing in Wireless Sensor Network. Proceedings of the International Conference on Inventive Research in Computing Applications, ICIRCA 2018 118(20):264–68. https://doi.org/10.1109/ICIRCA.2018.8597353
- Priyadarshi R (2017) and Abhyuday Bhardwaj. Node Non-Uniformity for Energy Effectual Coordination in Wsn. International Journal on Information Technologies & Security, № 4(4):2017. https://ijits-bg.com/contents/IJITS-No4-2017/2017-N4-01.pdf
- Wang Y, Martonosi M, and Li-Shiuan Peh (2007) Predicting Link Quality using supervised learning in Wireless Sensor Networks. ACM SIGMOBILE Mob Comput Commun Rev 11(3):71–83. https://doi.org/10.1145/1317425.1317434ArticleGoogle Scholar
- Priyadarshi R, Bhardwaj P, Gupta P (2023) and Vijay Nath. Utilization of Smartphone-Based Wireless Sensors in Agricultural Science: A State of Art. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and Jyotsna Kumar Mandal, 887:681–88. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_56
- Xu K, Tian Y, and Nirwan Ansari (2004) TCP-Jersey for Wireless IP communications. IEEE J Sel Areas Commun 22(4):747–756. https://doi.org/10.1109/JSAC.2004.825989ArticleGoogle Scholar
- Zhang C, Jiang J, and Mohamed Kamel (2005) Intrusion detection using hierarchical neural networks. Pattern Recognit Lett 26(6):779–791. https://doi.org/10.1016/j.patrec.2004.09.045ArticleGoogle Scholar
- Priyadarshi R, Singh L, Randheer, Singh A (2018) A Novel HEED Protocol for Wireless Sensor Networks. In 2018 5th International Conference on Signal Processing and Integrated Networks, SPIN 2018, 296–300. https://doi.org/10.1109/SPIN.2018.8474286
- Yi C, Afanasyev A, Moiseenko I, Wang L, Zhang B, Zhang L (2013) A case for Stateful Forwarding Plane. Comput Commun 36(7):779–791. https://doi.org/10.1016/j.comcom.2013.01.005ArticleGoogle Scholar
- Priyadarshi R, Singh L, Singh A, Thakur A (2018) SEEN: Stable Energy Efficient Network for Wireless Sensor Network. In 2018 5th International Conference on Signal Processing and Integrated Networks, SPIN 2018, 338–42. https://doi.org/10.1109/SPIN.2018.8474228
- Williams N, Zander S, Armitage G (2006) A Preliminary Performance Comparison of Five Machine Learning Algorithms for practical IP Traffic Flow classification. Comput Communication Rev 36(5):7–15. https://doi.org/10.1145/1163593.1163596ArticleGoogle Scholar
- Priyadarshi R, Soni SK, Bhadu R, Nath V (2018) Performance Analysis of Diamond Search Algorithm over full search algorithm. Microsyst Technol 24(6):2529–2537. https://doi.org/10.1007/s00542-017-3625-0ArticleGoogle Scholar
- Wang Z, Zhang M, Wang D, Song C, Liu M, Li J, Lou L, and Zhuo Liu (2017) Failure prediction using machine learning and Time Series in Optical Network. Opt Express 25(16):18553. https://doi.org/10.1364/oe.25.018553ArticleGoogle Scholar
- Priyadarshi R, Soni SK, and Vijay Nath (2018) Energy efficient cluster head formation in Wireless Sensor Network. Microsyst Technol 24(12):4775–4784. https://doi.org/10.1007/s00542-018-3873-7ArticleGoogle Scholar
- Zhang J, Chen C, Xiang Y, Wanlei Zhou, and Yong Xiang (2013) Internet traffic classification by aggregating correlated naive bayes predictions. IEEE Trans Inf Forensics Secur 8(1):5–15. https://doi.org/10.1109/TIFS.2012.2223675ArticleGoogle Scholar
Author information
Authors and Affiliations
- College of Department of Linguistics and Translation, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, 999077, China Kewei Bian
- Faculty of Engineering & Technology, ITER, Siksha ‘O’ Anusandhan University, Bhubaneswar, 751030, India Rahul Priyadarshi
- Kewei Bian