Machine Learning Optimization Techniques: A Survey, Classification, Challenges, and Future Research Issues

Optimization approaches in machine learning (ML) are essential for training models to obtain high performance across numerous domains. The article provides a comprehensive overview of ML optimization strategies, emphasizing their classification, obstacles, and potential areas for further study. We proceed with studying the historical progression of optimization methods, emphasizing significant developments and their influence on contemporary algorithms. We analyse the present research to identify widespread optimization algorithms and their uses in supervised learning, unsupervised learning, and reinforcement learning. Various common optimization constraints, including non-convexity, scalability issues, convergence problems, and concerns about robustness and generalization, are also explored. We suggest future research should focus on scalability problems, innovative optimization techniques, domain knowledge integration, and improving interpretability. The present study aims to provide an in-depth review of ML optimization by combining insights from historical advancements, literature evaluations, and current issues to guide future research efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

How Can Machine Learning and Optimization Help Each Other Better?

Article 19 December 2019

Learning to optimize: A tutorial for continuous and mixed-integer optimization

Article 08 May 2024

Machine Learning: Towards an Unified Classification Criteria

Chapter © 2021

Explore related subjects

References

  1. Adams R (2013) Active Queue Management: a Survey. IEEE Commun Surv Tutorials 15(3):1425–1476. https://doi.org/10.1109/SURV.2012.082212.00018ArticleGoogle Scholar
  2. Alsheikh M, Abu S, Lin D, Niyato, and Hwee Pink Tan (2014) Machine learning in Wireless Sensor networks: algorithms, strategies, and applications. IEEE Commun Surv Tutorials 16(4):1996–2018. https://doi.org/10.1109/COMST.2014.2320099ArticleGoogle Scholar
  3. Anurag A, Priyadarshi R, Goel A, Gupta B (2020) 2-D Coverage Optimization in WSN Using a Novel Variant of Particle Swarm Optimisation. In 2020 7th International Conference on Signal Processing and Integrated Networks, SPIN 2020, 663–68. https://doi.org/10.1109/SPIN48934.2020.9070978
  4. Badarla V, Siva Ram Murthy C (2010) A novel learning based solution for Efficient Data Transport in Heterogeneous Wireless Networks. Wireless Netw 16(6):1777–1798. https://doi.org/10.1007/s11276-009-0228-4ArticleGoogle Scholar
  5. Priyadarshi R, Gupta B, and Amulya Anurag (2020) Wireless Sensor Networks Deployment: a result oriented analysis. Wireless Pers Commun 113(2):843–866. https://doi.org/10.1007/s11277-020-07255-9ArticleGoogle Scholar
  6. Auld T, Moore AW, Gull SF (2007) Bayesian neural networks for internet traffic classification. IEEE Trans Neural Networks 18(1):223–239. https://doi.org/10.1109/TNN.2006.883010ArticleGoogle Scholar
  7. Priyadarshi R, Gupta B, and Amulya Anurag (2020) Deployment techniques in Wireless Sensor networks: a Survey, classification, challenges, and Future Research Issues. J Supercomputing 76(9):7333–7373. https://doi.org/10.1007/s11227-020-03166-5ArticleGoogle Scholar
  8. Priyadarshi R (2021) and Ravi Ranjan Kumar. An Energy-Efficient LEACH Routing Protocol for Wireless Sensor Networks. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and J K Mandal, 673:423–30. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-5546-6_35
  9. Ayoubi S, Limam N, Salahuddin MA, Shahriar N, Boutaba R, Estrada-Solano F, Caicedo OM (2018) Machine Learning for Cognitive Network Management. IEEE Commun Mag 56(1):158–165. https://doi.org/10.1109/MCOM.2018.1700560ArticleGoogle Scholar
  10. Priyadarshi R, Nath V (2019) A Novel Diamond–Hexagon Search Algorithm for Motion Estimation. Microsyst Technol 25(12):4587–4591. https://doi.org/10.1007/s00542-019-04376-5ArticleGoogle Scholar
  11. Rosenblatt F (1960) Perceptron simulation experiments. Proceedings of the IRE 48.3:301–309
  12. Werbos PJ (1994) The roots of backpropagation: from ordered derivatives to neural networks and political forecasting, vol 1. Wiley
  13. Nouretdinov I et al (2011) Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. NeuroImage 56(2):809–813 ArticleGoogle Scholar
  14. Vandenberghe L, Boyd S (1996) Semidefinite programming. SIAM Rev 38(1):49–95 ArticleMathSciNetGoogle Scholar
  15. LeCun Y, Bengio Y, Hinton G (2015) Deep Learn Nat 521:436–444 Google Scholar
  16. Priyadarshi R, Rana H, Srivastava A, Nath V (2023) A Novel Approach for Sink Route in Wireless Sensor Network. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and Jyotsna Kumar Mandal, 887:695–703. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_58
  17. Bkassiny M, Li Y, Jayaweera SK (2013) A Survey on Machine-Learning techniques in Cognitive Radios. IEEE Commun Surv Tutorials 15(3):1136–1159. https://doi.org/10.1109/SURV.2012.100412.00017ArticleGoogle Scholar
  18. Qiu Y, Ma L, and Rahul Priyadarshi (2024) Deep Learning challenges and prospects in Wireless Sensor Network Deployment. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-024-10079-6ArticleMathSciNetGoogle Scholar
  19. Chabaa S, Zeroual A, and Jilali Antari (2010) Identification and prediction of internet traffic using Artificial neural networks. J Intell Learn Syst Appl 02(03):147–155. https://doi.org/10.4236/jilsa.2010.23018ArticleGoogle Scholar
  20. Chang C, Chung, Chih Jen Lin (2011) LIBSVM: a Library for Support Vector machines. ACM Trans Intell Syst Technol 2(3). https://doi.org/10.1145/1961189.1961199
  21. Claeys M, Latre S, Famaey J, and Filip De Turck (2014) Design and evaluation of a self-learning http adaptive video streaming client. IEEE Commun Lett 18(4):716–719. https://doi.org/10.1109/LCOMM.2014.020414.132649ArticleGoogle Scholar
  22. Claeys M, Latré S, Famaey J, Wu T, Van Leekwijck W, and Filip De Turck (2014) Design and optimisation of a (FA)Q-Learning-based HTTP adaptive streaming client. Connection Sci 26(1):25–43. https://doi.org/10.1080/09540091.2014.885273ArticleGoogle Scholar
  23. Randheer SK, Soni S, Kumar, and Rahul Priyadarshi (2020). Energy-Aware Clustering in Wireless Sensor Networks BT - Nanoelectronics, Circuits and Communication Systems. In, edited by Vijay Nath and J K, Mandal 453–61. Singapore: Springer Singapore
  24. Dowling J, Curran E, Cunningham R, and Vinny Cahill (2005) Using feedback in collaborative reinforcement learning to adaptively optimize MANET Routing. IEEE Trans Syst Man Cybernetics Part A:Systems Hum 35(3):360–372. https://doi.org/10.1109/TSMCA.2005.846390ArticleGoogle Scholar
  25. Priyadarshi R, Gupta B (2023) 2-D Coverage optimization in obstacle-based FOI in WSN using modified PSO. J Supercomputing 79(5):4847–4869. https://doi.org/10.1007/s11227-022-04832-6ArticleGoogle Scholar
  26. Edalat Y, Ahn JS, and Katia Obraczka (2016) Smart experts for Network State Estimation. IEEE Trans Netw Serv Manage 13(3):622–635. https://doi.org/10.1109/TNSM.2016.2586506ArticleGoogle Scholar
  27. Este A, Gringoli F, and Luca Salgarelli (2009) Support Vector machines for TCP Traffic classification. Comput Netw 53(14):2476–2490. https://doi.org/10.1016/j.comnet.2009.05.003ArticleGoogle Scholar
  28. Rawat P, Chauhan S, Priyadarshi R (2021) A novel heterogeneous clustering protocol for lifetime maximization of Wireless Sensor Network. Wireless Pers Commun 117(2):825–841. https://doi.org/10.1007/s11277-020-07898-8ArticleGoogle Scholar
  29. García-Teodoro P, Díaz-Verdejo J, Maciá-Fernández G, and E. Vázquez (2009) Anomaly-based network intrusion detection: techniques, systems and challenges. Computers Secur 28(1–2):18–28. https://doi.org/10.1016/j.cose.2008.08.003ArticleGoogle Scholar
  30. Priyadarshi R, and Bharat Gupta (2021) Area Coverage optimization in three-Dimensional Wireless Sensor Network. Wireless Pers Commun 117(2):843–865. https://doi.org/10.1007/s11277-020-07899-7ArticleGoogle Scholar
  31. Yin, F., Lin, Z., Kong, Q., Xu, Y., Li, D., Theodoridis, S.,… Cui, S. R. (2020). FedLoc:Federated Learning Framework for Data-Driven Cooperative Localization and Location Data Processing. IEEE Open Journal of Signal Processing, 1:187–215. https://doi.org/10.1109/OJSP.2020.3036276
  32. Yin F, Fritsche C, Jin D, Gustafsson F, Zoubir AM (2015) Cooperative localization in WSNs using Gaussian Mixture modeling: distributed ECM algorithms. IEEE Trans Signal Process 63(6):1448–1463. https://doi.org/10.1109/TSP.2015.2394300ArticleGoogle Scholar
  33. Xu G, Zhang Q, Song Z, Ai B (2023) Relay-assisted Deep Space Optical Communication System over coronal fading channels. IEEE Trans Aerosp Electron Syst 59(6):8297–8312. https://doi.org/10.1109/TAES.2023.3301463ArticleGoogle Scholar
  34. Yan, A., Li, Z., Gao, Z., Zhang, J., Huang, Z., Ni, T.,… Wen, X. (2024). MURLAV: A Multiple-Node-Upset Recovery Latch and Algorithm-Based Verification Method. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. https://doi.org/10.1109/TCAD.2024.3357593
  35. Yan, A., Cao, A., Huang, Z., Cui, J., Ni, T., Girard, P.,… Zhang, J. (2023). Two Double-Node-Upset-Hardened Flip-Flop Designs for High-Performance Applications. IEEE Transactions on Emerging Topics in Computing, 11(4):1070–1081. https://doi.org/10.1109/TETC.2023.3317070
  36. Dai M, Luo L, Ren J, Yu H, Sun G (2022) PSACCF: prioritized online slice Admission Control considering Fairness in 5G/B5G networks. IEEE Trans Netw Sci Eng 9(6):4101–4114. https://doi.org/10.1109/TNSE.2022.3195862ArticleGoogle Scholar
  37. Sun G, Xu Z, Yu H, Chang V (2021) Dynamic network function provisioning to Enable Network in Box for Industrial Applications. IEEE Trans Industr Inf 17(10):7155–7164. https://doi.org/10.1109/TII.2020.3042872ArticleGoogle Scholar
  38. Sun, G., Zhu, G., Liao, D., Yu, H., Du, X.,… Guizani, M. (2019). Cost-Efficient Service Function Chain Orchestration for Low-Latency Applications in NFV Networks. IEEE Systems Journal, 13(4):3877–3888. https://doi.org/10.1109/JSYST.2018.2879883
  39. Ma X, Dong Z, Quan W, Dong Y, Tan Y (2023) Real-time assessment of asphalt pavement moduli and traffic loads using monitoring data from Built-in Sensors: Optimal sensor placement and identification algorithm.Mech Syst Signal Process 187:109930. https://doi.org/10.1016/j.ymssp.2022.109930
  40. Qu J, Mao B, Li Z, Xu Y, Zhou K, Cao X, Wang X (2023) Recent progress in Advanced Tactile Sensing technologies for Soft Grippers. Adv Funct Mater 33(41):2306249. https://doi.org/10.1002/adfm.202306249ArticleGoogle Scholar
  41. Priyadarshi R, Bhardwaj P, Gupta P, and Vijay Nath (2023) Utilization of smartphone-based Wireless sensors in Agricultural Science: a state of art. Lecture Notes Electr Eng 887:681–688. https://doi.org/10.1007/978-981-19-1906-0_56ArticleGoogle Scholar
  42. Li R, Peng B (2022) Implementing Monocular Visual-Tactile sensors for Robust Manipulation. Cyborg Bionic Syst 2022. https://doi.org/10.34133/2022/9797562
  43. Aibin Y, Feng X, Zhao X, Zhou H, Cui J, Ying Z, Girard P, Wen X HITTSFL: Design of a Cost-Effective HIS-Insensitive TNU-Tolerant and SET-Filtering Latch for Safety-Critical Applications, IEEE/ACM Design Automation Conference (DAC2020), Oral, pp. 1–6, 2020/7/19–23, San Francisco, USA
  44. J., X., S., H. P., X., Z., & J., H. (2022) The improvement of Road Driving Safety guided by visual Inattentional blindness. IEEE Trans Intell Transp Syst, 23(6):4972–4981. https://doi.org/10.1109/TITS.2020.3044927
  45. Priyadarshi R, and Bharat Gupta (2020) Coverage Area Enhancement in Wireless Sensor Network. Microsyst Technol 26(5):1417–1426. https://doi.org/10.1007/s00542-019-04674-yArticleGoogle Scholar
  46. Dai X, Xiao Z, Jiang H, Alazab M, Lui JCS, Dustdar S, Liu J (2023) Task Co-offloading for D2D-Assisted Mobile Edge Computing in Industrial Internet of things. IEEE Trans Industr Inf 19(1):480–490. https://doi.org/10.1109/TII.2022.3158974ArticleGoogle Scholar
  47. Jiang H, Dai X, Xiao Z, Iyengar AK (2022) Joint Task Offloading and Resource Allocation for Energy-Constrained Mobile Edge Computing. IEEE Trans Mob Comput. https://doi.org/10.1109/TMC.2022.3150432ArticleGoogle Scholar
  48. Dai X, Xiao Z, Jiang H, Lui JCS (2023) UAV-Assisted Task Offloading in Vehicular Edge Computing Networks. IEEE Trans Mob Comput. https://doi.org/10.1109/TMC.2023.3259394ArticleGoogle Scholar
  49. Sun L, Liang J, Zhang C, Wu D, Zhang Y (2023) Meta-transfer Metric Learning for Time Series classification in 6G-Supported Intelligent Transportation systems. IEEE Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2023.3250962ArticleGoogle Scholar
  50. Mao Y, Sun R, Wang J, Cheng Q, Kiong L, Ochieng C, Y. W (2022) New time-differenced carrier phase approach to GNSS/INS integration. GPS Solutions 26(4):122. https://doi.org/10.1007/s10291-022-01314-3ArticleGoogle Scholar
  51. Mao Y, Zhu Y, Tang Z, Chen Z (2022) A Novel Airspace Planning Algorithm for Cooperative Target localization. Electronics 11(18):2950. https://doi.org/10.3390/electronics11182950ArticleGoogle Scholar
  52. Xie Y, Wang X, Shen Z, Sheng Y, Wu G (2023) A two-stage estimation of distribution Algorithm with Heuristics for Energy-Aware Cloud Workflow Scheduling. IEEE Trans Serv Comput 16(6):4183–4197. https://doi.org/10.1109/TSC.2023.3311785ArticleGoogle Scholar
  53. Shang M, Luo J (2021) The Tapio Decoupling Principle and Key strategies for changing factors of Chinese urban Carbon Footprint based on Cloud Computing. Int J Environ Res Public Health 18(4):2101. https://doi.org/10.3390/ijerph18042101ArticleGoogle Scholar
  54. Luo J, Zhao C, Chen Q, Li G (2022) Using deep belief network to construct the agricultural information system based on internet of things. J Supercomputing 78(1):379–405. https://doi.org/10.1007/s11227-021-03898-yArticleGoogle Scholar
  55. Cao B, Zhao J, Yang P, Gu Y, Muhammad K, Rodrigues J, C P J, V de Albuquerque, C H (2020) Multiobjective 3-D Topology Optimization of Next-Generation Wireless Data Center Network. IEEE Trans Industr Inf 16(5):3597–3605. https://doi.org/10.1109/TII.2019.2952565ArticleGoogle Scholar
  56. Yu J, Lu L, Chen Y, Zhu Y, Kong L (2021) An indirect eavesdropping attack of keystrokes on Touch screen through Acoustic Sensing. IEEE Trans Mob Comput 20(2):337–351. https://doi.org/10.1109/TMC.2019.2947468ArticleGoogle Scholar
  57. Li K, Ji L, Yang S, Li H, Liao X (2022) Couple-Group Consensus of Cooperative–competitive heterogeneous Multiagent systems: a fully distributed event-triggered and Pinning Control Method. IEEE Trans Cybernetics 52(6):4907–4915. https://doi.org/10.1109/TCYB.2020.3024551ArticleGoogle Scholar
  58. Min H, Lei X, Wu X, Fang Y, Chen S, Wang W, Zhao X (2024) Toward interpretable anomaly detection for autonomous vehicles with denoising variational transformer. Eng Appl Artif Intell 129:107601. https://doi.org/10.1016/j.engappai.2023.107601ArticleGoogle Scholar
  59. Hou X, Zhang L, Su Y, Gao G, Liu Y, Na Z, Chen T (2023) A space crawling robotic bio-paw (SCRBP) enabled by triboelectric sensors for surface identification. Nano Energy 105:108013. https://doi.org/10.1016/j.nanoen.2022.108013ArticleGoogle Scholar
  60. Hou X, Xin L, Fu Y, Na Z, Gao G, Liu Y, Chen T (2023) A self-powered biomimetic mouse whisker sensor (BMWS) aiming at terrestrial and space objects perception. Nano Energy 118:109034. https://doi.org/10.1016/j.nanoen.2023.109034ArticleGoogle Scholar
  61. Liang X, Chen Z, Deng Y, Liu D, Liu X, Huang Q, Arai T (2023) Field-controlled microrobots fabricated by Photopolymerization. Cyborg Bionic Syst 4:9. https://doi.org/10.34133/cbsystems.0009ArticleGoogle Scholar
  62. Ma S, Chen Y, Yang S, Liu S, Tang L, Li B, Li Y (2023) The Autonomous Pipeline Navigation of a Cockroach Bio-robot with enhanced walking stimuli. Cyborg Bionic Syst 4:67. https://doi.org/10.34133/cbsystems.0067ArticleGoogle Scholar
  63. Cai Z, Zhu X, Gergondet P, Chen X, Yu Z (2023) A friction-driven strategy for Agile Steering Wheel Manipulation by Humanoid Robots. Cyborg Bionic Syst 4:64. https://doi.org/10.34133/cbsystems.0064ArticleGoogle Scholar
  64. Li X, Sun Y (2021) Application of RBF neural network optimal segmentation algorithm in credit rating. Neural Comput Appl 33(14):8227–8235. https://doi.org/10.1007/s00521-020-04958-9ArticleGoogle Scholar
  65. Long X, Mao M, Su T, Su Y, Tian M (2023) Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates. Def Technol 23:100–111. https://doi.org/10.1016/j.dt.2022.02.003ArticleGoogle Scholar
  66. Long X, Lu C, Su Y, Dai Y (2023) Machine learning framework for predicting the low cycle fatigue life of lead-free solders. Eng Fail Anal 148:107228. https://doi.org/10.1016/j.engfailanal.2023.107228ArticleGoogle Scholar
  67. Hu J, Wu Y, Li T, Ghosh BK (2019) Consensus Control of General Linear Multiagent Systems with Antagonistic Interactions and communication noises. IEEE Trans Autom Control 64(5):2122–2127. https://doi.org/10.1109/TAC.2018.2872197ArticleMathSciNetGoogle Scholar
  68. Chen B, Hu J, Zhao Y, Ghosh BK (2022) Finite-Time velocity-free Rendezvous Control of multiple AUV Systems with Intermittent Communication. IEEE Trans Syst Man Cybernetics: Syst 52(10):6618–6629. https://doi.org/10.1109/TSMC.2022.3148295ArticleGoogle Scholar
  69. Bo C, Jiangping H, Bijoy G (2023) Finite-Time Observer Based Tracking Control of Heterogeneous Multi-AUV Systems with Partial Measurements and Intermittent Communication. Science China Information Sciences. https://doi.org/10.1007/s11432-023-3903-6
  70. Jiang Y, Li X (2022) Broadband cancellation method in an adaptive co-site interference cancellation system. Int J Electron 109(5):854–874. https://doi.org/10.1080/00207217.2021.1941295ArticleGoogle Scholar
  71. Zhang, X., Deng, H., Xiong, Z., Liu, Y., Rao, Y., Lyu, Y.,… Li, Y. (2024). Secure Routing Strategy Based on Attribute-Based Trust Access Control in Social-Aware Networks.Journal of Signal Processing Systems. https://doi.org/10.1007/s11265-023-01908-1
  72. Lyu T, Xu H, Zhang L, Han Z (2024) Source selection and resource allocation in Wireless-Powered Relay networks: an adaptive dynamic programming-based Approach. IEEE Internet Things J 11(5):8973–8988. https://doi.org/10.1109/JIOT.2023.3321673ArticleGoogle Scholar
  73. Liu G (April 2021) Data Collection in MI-Assisted Wireless Powered Underground Sensor networks: directions, recent advances, and challenges. IEEE Commun Mag 59(4):132–138. https://doi.org/10.1109/MCOM.001.2000921
  74. Zhao L, Qu S, Xu H, Wei Z, Zhang C (2024) Energy-efficient trajectory design for secure SWIPT systems assisted by UAV-IRS. Veh Commun 45:100725. https://doi.org/10.1016/j.vehcom.2023.100725ArticleGoogle Scholar
  75. Hou M, Zhao Y, Ge X (2017) Optimal scheduling of the plug-in electric vehicles aggregator energy and regulation services based on grid to vehicle. Int Trans Electr Energy Syst 27(6):e2364. https://doi.org/10.1002/etep.2364ArticleGoogle Scholar
  76. Lei Y, Yanrong C, Hai T, Ren G, Wenhuan W (2023) DGNet: an adaptive lightweight defect detection model for New Energy Vehicle Battery Current Collector. IEEE Sens J 23(23):29815–29830. https://doi.org/10.1109/JSEN.2023.3324441ArticleGoogle Scholar
  77. Xu Y, Wang E, Yang Y, Chang Y (2022) A unified collaborative representation learning for neural-network based Recommender systems. IEEE Trans Knowl Data Eng 34(11):5126–5139. https://doi.org/10.1109/TKDE.2021.3054782ArticleGoogle Scholar
  78. Liu X, Lou S, Dai W (2023) Further results on System identification of nonlinear state-space models. Automatica 148:110760. https://doi.org/10.1016/j.automatica.2022.110760ArticleMathSciNetGoogle Scholar
  79. Wang Q, Dai W, Zhang C, Zhu J, Ma X (2023) A Compact Constraint Incremental Method for Random Weight Networks and its application. IEEE transactions on neural networks and Learning systems. https://doi.org/10.1109/TNNLS.2023.3289798
  80. Zhang, H., Mi, Y., Liu, X., Zhang, Y., Wang, J.,… Tan, J. (2023). A differential game approach for real-time security defense decision in scale-free networks. Computer Networks, 224, 109635. https://doi.org/10.1016/j.comnet.2023.109635
  81. Cao K, Ding H, Li W, Lv L, Gao M, Gong F, Wang B (2022) On the Ergodic Secrecy Capacity of Intelligent reflecting surface aided Wireless Powered Communication systems. IEEE Wirel Commun Lett PP(1). https://doi.org/10.1109/LWC.2022.3199593
  82. Cheng, B., Wang, M., Zhao, S., Zhai, Z., Zhu, D.,… Chen, J. (2017). Situation-Aware Dynamic Service Coordination in an IoT Environment. IEEE/ACM Transactions on Networking,25(4), 2082–2095. https://doi.org/10.1109/TNET.2017.2705239
  83. Zheng, W., Lu, S., Cai, Z., Wang, R., Wang, L.,… Yin, L. (2023). PAL-BERT: An Improved Question Answering Model. Computer Modeling in Engineering & Sciences. https://doi.org/10.32604/cmes.2023.046692
  84. Cao B, Li Z, Liu X, Lv Z, He H (2023) Mobility-aware Multiobjective Task Offloading for Vehicular Edge Computing in Digital Twin Environment. IEEE J Sel Areas Commun 41(10):3046–3055. https://doi.org/10.1109/JSAC.2023.3310100ArticleGoogle Scholar
  85. Geurts P, Ernst D, and Louis Wehenkel (2006) Extremely randomized trees. Mach Learn 63(1):3–42. https://doi.org/10.1007/s10994-006-6226-1ArticleGoogle Scholar
  86. Giacinto G, Perdisci R, Rio MD, and Fabio Roli (2008) Intrusion detection in computer networks by a modular ensemble of one-class classifiers. Inform Fusion 9(1):69–82. https://doi.org/10.1016/j.inffus.2006.10.002ArticleGoogle Scholar
  87. Goldberger AS (2004) Econometric Computing by Hand. J Econ Soc Meas 29(1–3):115–117. https://doi.org/10.3233/jem-2004-0213ArticleGoogle Scholar
  88. Ha S, Rhee I, Xu L (2008) CUBIC: a new TCP-Friendly high-speed TCP variant. Operating Syst Rev (ACM) 42(5):64–74. https://doi.org/10.1145/1400097.1400105ArticleGoogle Scholar
  89. Hajji H (2005) Statistical Analysis of Network Traffic for Adaptive Faults Detection. IEEE Trans Neural Networks 16(5):1053–1063. https://doi.org/10.1109/TNN.2005.853414ArticleGoogle Scholar
  90. Hariri B, Sadati N (2007) NN-RED: an AQM mechanism based on neural networks. Electron Lett 43(19):1053–1055. https://doi.org/10.1049/el:20071791ArticleGoogle Scholar
  91. Hu T, and Yunsi Fei (2010) QELAR: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater Sensor Networks. IEEE Trans Mob Comput 9(6):796–809. https://doi.org/10.1109/TMC.2010.28ArticleGoogle Scholar
  92. Hu W, Wei Hu, and Steve Maybank (2008) AdaBoost-Based algorithm for Network Intrusion Detection. IEEE Trans Syst Man Cybernetics Part B: Cybernetics 38(2):577–583. https://doi.org/10.1109/TSMCB.2007.914695ArticleGoogle Scholar
  93. Jain V, Randheer R, Priyadarshi, and Ankush Thakur (2019) Performance analysis of Block Matching algorithms. Lecture Notes Electr Eng 556:73–82 Springer Singapore. https://doi.org/10.1007/978-981-13-7091-5_7ArticleGoogle Scholar
  94. Jayaraj A, Venkatesh T, Siva Ram C Murthy (2008) Loss classification in Optical Burst switching networks using machine learning techniques: improving the performance of TCP. IEEE J Sel Areas Commun 26(6):45–54. https://doi.org/10.1109/JSACOCN.2008.033508ArticleGoogle Scholar
  95. Khanafer RM, Solana B, Triola J, Barco R, Moltsen L, Altman Z, Lázaro P (2008) Automated diagnosis for UMTS Networks using bayesian Network Approach. IEEE Trans Veh Technol 57(4):2451–2461. https://doi.org/10.1109/TVT.2007.912610ArticleGoogle Scholar
  96. Kiciman E, and Armando Fox (2005) Detecting application-level failures in component-based internet services. IEEE Trans Neural Networks 16(5):1027–1041. https://doi.org/10.1109/TNN.2005.853411ArticleGoogle Scholar
  97. Klaine P, Valente MA, Imran O, Onireti, and Richard Demo Souza (2017) A Survey of Machine Learning techniques Applied to Self-Organizing Cellular Networks. IEEE Commun Surv Tutorials 19(4):2392–2431. https://doi.org/10.1109/COMST.2017.2727878ArticleGoogle Scholar
  98. Kumar S, Soni SK, Randheer, and Rahul Priyadarshi (2020) Performance Analysis of Novel Energy Aware Routing in Wireless Sensor Network. Lecture Notes Electr Eng 642:503–511 Springer Singapore. https://doi.org/10.1007/978-981-15-2854-5_44ArticleGoogle Scholar
  99. Kumar S, Soni SK, Randheer (2020) and Rahul Priyadarshi. Performance Analysis of Novel Energy Aware Routing in Wireless Sensor Network. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and J K Mandal, 642:503–11. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-2854-5_44
  100. Lemaître G, Nogueira F, Aridas CK (2017) Imbalanced-Learn: a Python Toolbox to tackle the curse of Imbalanced datasets in Machine Learning. J Mach Learn Res 18:1–5 Google Scholar
  101. Mirza M, Sommers J, Barford P, Zhu X (2010) A Machine Learning Approach to TCP Throughput Prediction. IEEE/ACM Trans Networking 18(4):1026–1039. https://doi.org/10.1109/TNET.2009.2037812ArticleGoogle Scholar
  102. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A et al (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533. https://doi.org/10.1038/nature14236ArticleGoogle Scholar
  103. Priyadarshi R, Yadav S, and Deepika Bilyan (2019) Performance and comparison analysis of MIEEP Routing Protocol over adapted LEACH Protocol. Smart Comput Strategies: Theoretical Practical Aspects 237–245. https://doi.org/10.1007/978-981-13-6295-8_20
  104. Moustapha AI, and Rastko R. Selmic (2008) Wireless Sensor Network modeling using modified recurrent neural networks: application to Fault Detection. IEEE Trans Instrum Meas 57(5):981–988. https://doi.org/10.1109/TIM.2007.913803ArticleGoogle Scholar
  105. Muniyandi A, Prabakar R, Rajeswari, Rajaram R (2012) Network Anomaly detection by cascading K-Means clustering and C4.5 decision Tree Algorithm. Procedia Eng 30:174–182. https://doi.org/10.1016/j.proeng.2012.01.849ArticleGoogle Scholar
  106. Nguyen TTT, Armitage G, Philip Branch, and Sebastian Zander (2012) Timely and continuous machine-learning-based classification for interactive IP traffic. IEEE/ACM Trans Networking 20(6):1880–1894. https://doi.org/10.1109/tnet.2012.2187305ArticleGoogle Scholar
  107. Nguyen TTT, and Grenville Armitage (2008) A survey of techniques for internet traffic classification using machine learning. IEEE Commun Surv Tutorials 10(4):56–76. https://doi.org/10.1109/SURV.2008.080406ArticleGoogle Scholar
  108. Nichols K, and Van Jacobson (2012) Controlling Queue Delay. Queue 10(5):20–34. https://doi.org/10.1145/2208917.2209336ArticleGoogle Scholar
  109. Nunes BA, Arouche K, Veenstra W, Ballenthin S, Lukin, Obraczka K (2014) A Machine Learning Framework for TCP Round-Trip Time Estimation. Eurasip Journal on Wireless Communications and Networking 2014. https://doi.org/10.1186/1687-1499-2014-47
  110. Panda M, Abraham A, and Manas Ranjan Patra (2012) A hybrid Intelligent Approach for Network Intrusion Detection. Procedia Eng 30:1–9. https://doi.org/10.1016/j.proeng.2012.01.827ArticleGoogle Scholar
  111. Pandey A, Kumar D, Priyadarshi R (2023) and Vijay Nath. Development of Smart Village for Better Lifestyle of Farmers by Crop and Health Monitoring System. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and Jyotsna Kumar Mandal, 887:689–94. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_57
  112. Pandey A, Kumar D, Priyadarshi R, and Vijay Nath (2023) Development of Smart Village for Better Lifestyle of Farmers by Crop and Health Monitoring System. Lecture Notes Electr Eng 887:689–694. https://doi.org/10.1007/978-981-19-1906-0_57. Springer Nature Singapore Singapore ArticleGoogle Scholar
  113. Peddabachigari S, Abraham A, Grosan C, and Johnson Thomas (2007) Modeling intrusion detection system using hybrid Intelligent systems. J Netw Comput Appl 30(1):114–132. https://doi.org/10.1016/j.jnca.2005.06.003ArticleGoogle Scholar
  114. Pinson MH, Wolf S (2004) A new standardized method for objectively measuring Video Quality. IEEE Trans Broadcast 50(3):312–322. https://doi.org/10.1109/TBC.2004.834028ArticleGoogle Scholar
  115. Priyadarshi R, Rawat P, and Vijay Nath (2019) Energy dependent cluster formation in heterogeneous Wireless Sensor Network. Microsyst Technol 25(6):2313–2321. https://doi.org/10.1007/s00542-018-4116-7ArticleGoogle Scholar
  116. Jiang H, Luo Y, Zhang QY, Yin MY, and Chun Wu (2017) TCP-Gvegas with prediction and adaptation in Multi-hop Ad Hoc Networks. Wireless Netw 23(5):1535–1548. https://doi.org/10.1007/s11276-016-1242-yArticleGoogle Scholar
  117. Priyadarshi R, Rawat P, Nath V, Acharya B, Shylashree N (2020) Three Level Heterogeneous Clustering Protocol for Wireless Sensor Network. Microsyst Technol 26(12):3855–3864. https://doi.org/10.1007/s00542-020-04874-xArticleGoogle Scholar
  118. Jiang S, Song X, Wang H, Han JJ, Li QH (2006) A clustering-based method for unsupervised intrusion detections. Pattern Recognit Lett 27(7):802–810. https://doi.org/10.1016/j.patrec.2005.11.007ArticleGoogle Scholar
  119. Priyadarshi R, Singh L, Kumar S, Sharma I (2018) A Hexagonal Network Division Approach for Reducing Energy Hole Issue in WSN. Eur J Pure Appl Math 118 (March)
  120. Jin Y, Duffield N, Erman J, Haffner P, Sen S, and Zhi Li Zhang (2012) A modular machine Learning System for Flow-Level Traffic classification in large networks. ACM Trans Knowl Discovery Data 6(1). https://doi.org/10.1145/2133360.2133364
  121. Karagiannis T, Papagiannaki K, Faloutsos M (2005) BLINC: Multilevel Traffic classification in the Dark. Comput Communication Rev 35(4):229–240. https://doi.org/10.1145/1090191.1080119ArticleGoogle Scholar
  122. Karami A (2015) ACCPndn: adaptive congestion control protocol in named data networking by learning capacities using optimized time-lagged feedforward neural network. J Netw Comput Appl 56:1–18. https://doi.org/10.1016/j.jnca.2015.05.017ArticleGoogle Scholar
  123. Priyadarshi R, Soni SK, and Prashant Sharma (2019) An enhanced GEAR Protocol for Wireless Sensor Networks. Lecture Notes Electr Eng 511:289–297 Springer Singapore. https://doi.org/10.1007/978-981-13-0776-8_27ArticleGoogle Scholar
  124. Rao S (2006) Operational Fault detection in Cellular Wireless Base-stations. IEEE Trans Netw Serv Manage 3(2):1–11. https://doi.org/10.1109/TNSM.2006.4798311ArticleGoogle Scholar
  125. Rawat P, Chauhan S, and Rahul Priyadarshi (2020) Energy-efficient clusterhead selection Scheme in Heterogeneous Wireless Sensor Network. J Circuits Syst Computers 29(13):2050204. https://doi.org/10.1142/S0218126620502047ArticleGoogle Scholar
  126. Reddy EK (2017) Comparative Analysis of Clustering Techniques in Data Mining. Int J Adv Sci Technol Eng Manage Sci 9028(1):2454–2356. www.ijastems.orgGoogle Scholar
  127. Ross DA, Lim J, Lin RS, Ming HY (2008) Incremental learning for Robust Visual Tracking. Int J Comput Vision 77(1–3):125–141. https://doi.org/10.1007/s11263-007-0075-7ArticleGoogle Scholar
  128. Sateesh V, Anugrahith A, Kumar R, Priyadarshi, Nath V (2021) A Novel Deployment Scheme to Enhance the Coverage in Wireless Sensor Network. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and J K Mandal, 673:985–93. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-5546-6_82
  129. Shon T, and Jongsub Moon (2007) A Hybrid Machine Learning Approach to Network Anomaly Detection. Inf Sci 177(18):3799–3821. https://doi.org/10.1016/j.ins.2007.03.025ArticleGoogle Scholar
  130. Singh L, Kumar A (2020) and Rahul Priyadarshi. Performance and Comparison Analysis of Image Processing Based Forest Fire Detection. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and J K Mandal, 642:473–79. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-2854-5_41
  131. Sun J, Chan S, Zukerman M (2012) IAPI: An Intelligent adaptive PI active Queue Management Scheme. Comput Commun 35(18):2281–2293. https://doi.org/10.1016/j.comcom.2012.07.013ArticleGoogle Scholar
  132. Priyadarshi R, and Raj Vikram (2023) A triangle-based localization Scheme in Wireless Multimedia Sensor Network. Wireless Pers Commun 133(1):525–546. https://doi.org/10.1007/s11277-023-10777-7ArticleGoogle Scholar
  133. Tesauro G (2007) Reinforcement learning in Autonomic Computing: a Manifesto and Case studies. IEEE Internet Comput 11(1):22–30. https://doi.org/10.1109/MIC.2007.21ArticleGoogle Scholar
  134. Tsai C, Fong YF, Hsu CY, Lin, Wei YL (2009) Intrusion detection by machine learning: a review. Expert Syst Appl 36(10):11994–11990. https://doi.org/10.1016/j.eswa.2009.05.029ArticleGoogle Scholar
  135. Priyadarshi R, Yadav S (2019) and Deepika Bilyan. Performance Analysis of Adapted Selection Based Protocol over LEACH Protocol. In Smart Computational Strategies: Theoretical and Practical Aspects, edited by Ashish Kumar Luhach, Kamarul Bin Ghazali Hawari, Ioan Cosmin Mihai, Pao-Ann Hsiung, and Ravi Bhushan Mishra, 247–56. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-6295-8_21
  136. Wang M, Cui Y, Wang X, Shihan Xiao, and Junchen Jiang (2018) Machine learning for networking: Workflow, advances and opportunities. IEEE Network 32(2):92–99. https://doi.org/10.1109/MNET.2017.1700200ArticleMathSciNetGoogle Scholar
  137. Priyadarshi R (2024) Energy-efficient routing in Wireless Sensor networks: a Meta-heuristic and Artificial Intelligence-Based Approach: a Comprehensive Review. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-023-10039-6ArticleGoogle Scholar
  138. Stigler SM (2007) Gauss and the invention of least squares. Annals Stat 9(3). https://doi.org/10.1214/aos/1176345451
  139. Priyadarshi R (2024) Exploring machine learning solutions for overcoming challenges in IoT-Based Wireless Sensor Network Routing: a Comprehensive Review. Wireless Netw. https://doi.org/10.1007/s11276-024-03697-2ArticleGoogle Scholar
  140. Thakkar Mansi K, Patel MM (2018) Energy Efficient Routing in Wireless Sensor Network. Proceedings of the International Conference on Inventive Research in Computing Applications, ICIRCA 2018 118(20):264–68. https://doi.org/10.1109/ICIRCA.2018.8597353
  141. Priyadarshi R (2017) and Abhyuday Bhardwaj. Node Non-Uniformity for Energy Effectual Coordination in Wsn. International Journal on Information Technologies & Security, № 4(4):2017. https://ijits-bg.com/contents/IJITS-No4-2017/2017-N4-01.pdf
  142. Wang Y, Martonosi M, and Li-Shiuan Peh (2007) Predicting Link Quality using supervised learning in Wireless Sensor Networks. ACM SIGMOBILE Mob Comput Commun Rev 11(3):71–83. https://doi.org/10.1145/1317425.1317434ArticleGoogle Scholar
  143. Priyadarshi R, Bhardwaj P, Gupta P (2023) and Vijay Nath. Utilization of Smartphone-Based Wireless Sensors in Agricultural Science: A State of Art. In Lecture Notes in Electrical Engineering, edited by Vijay Nath and Jyotsna Kumar Mandal, 887:681–88. Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1906-0_56
  144. Xu K, Tian Y, and Nirwan Ansari (2004) TCP-Jersey for Wireless IP communications. IEEE J Sel Areas Commun 22(4):747–756. https://doi.org/10.1109/JSAC.2004.825989ArticleGoogle Scholar
  145. Zhang C, Jiang J, and Mohamed Kamel (2005) Intrusion detection using hierarchical neural networks. Pattern Recognit Lett 26(6):779–791. https://doi.org/10.1016/j.patrec.2004.09.045ArticleGoogle Scholar
  146. Priyadarshi R, Singh L, Randheer, Singh A (2018) A Novel HEED Protocol for Wireless Sensor Networks. In 2018 5th International Conference on Signal Processing and Integrated Networks, SPIN 2018, 296–300. https://doi.org/10.1109/SPIN.2018.8474286
  147. Yi C, Afanasyev A, Moiseenko I, Wang L, Zhang B, Zhang L (2013) A case for Stateful Forwarding Plane. Comput Commun 36(7):779–791. https://doi.org/10.1016/j.comcom.2013.01.005ArticleGoogle Scholar
  148. Priyadarshi R, Singh L, Singh A, Thakur A (2018) SEEN: Stable Energy Efficient Network for Wireless Sensor Network. In 2018 5th International Conference on Signal Processing and Integrated Networks, SPIN 2018, 338–42. https://doi.org/10.1109/SPIN.2018.8474228
  149. Williams N, Zander S, Armitage G (2006) A Preliminary Performance Comparison of Five Machine Learning Algorithms for practical IP Traffic Flow classification. Comput Communication Rev 36(5):7–15. https://doi.org/10.1145/1163593.1163596ArticleGoogle Scholar
  150. Priyadarshi R, Soni SK, Bhadu R, Nath V (2018) Performance Analysis of Diamond Search Algorithm over full search algorithm. Microsyst Technol 24(6):2529–2537. https://doi.org/10.1007/s00542-017-3625-0ArticleGoogle Scholar
  151. Wang Z, Zhang M, Wang D, Song C, Liu M, Li J, Lou L, and Zhuo Liu (2017) Failure prediction using machine learning and Time Series in Optical Network. Opt Express 25(16):18553. https://doi.org/10.1364/oe.25.018553ArticleGoogle Scholar
  152. Priyadarshi R, Soni SK, and Vijay Nath (2018) Energy efficient cluster head formation in Wireless Sensor Network. Microsyst Technol 24(12):4775–4784. https://doi.org/10.1007/s00542-018-3873-7ArticleGoogle Scholar
  153. Zhang J, Chen C, Xiang Y, Wanlei Zhou, and Yong Xiang (2013) Internet traffic classification by aggregating correlated naive bayes predictions. IEEE Trans Inf Forensics Secur 8(1):5–15. https://doi.org/10.1109/TIFS.2012.2223675ArticleGoogle Scholar

Author information

Authors and Affiliations

  1. College of Department of Linguistics and Translation, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, 999077, China Kewei Bian
  2. Faculty of Engineering & Technology, ITER, Siksha ‘O’ Anusandhan University, Bhubaneswar, 751030, India Rahul Priyadarshi
  1. Kewei Bian